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ABSTRACT 
 

Monitoring Land-Cover Change in the Las Vegas Valley: A Study of Five Change  
Detection Methods in an Urban Environment 

 
Bonnie D. Weidemann 

Department of Geography, BYU 
Master of Science 

 
Change detection is currently a topic of great interest to theoretic geographic 

researchers. The necessity to map, monitor, and model land cover change is also 
important to a variety of applied fields as varied as urban planning and military 
intelligence. This research compares five algorithms to map urban land cover change in 
the greater Las Vegas, Nevada metropolitan area. Landsat Thematic Mapper imagery 
acquired on May 1990 and May 2000 was used as the primary data. The change detection 
methods yielded simple maps of change vs. no change. These algorithms included image 
differencing, image ratioing, image regression, vegetation index differencing, and 
principal components analysis. Each of these techniques accurately identified areas of 
land cover with moderate levels of accuracy and produced overall change detection 
accuracy values between 60% and 76% depending on the method. The highest accuracy 
was obtained by the image ratioing method using the red spectral band (76%).   

As expected, the determination of change detection thresholds for each technique 
was critical to the accuracy produced by the algorithm. Moreover, the type of statistic 
used in optimizing that threshold was also a significant impacting the final accuracy. The 
approach of using a set of ground points to calibrate the change detection threshold 
proved to have significant merit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Keywords: change detection, Las Vegas, threshold, Landsat TM 
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Chapter 1: Introduction 

In 2008, Ban Ki-moon, Secretary-General of the United Nations wrote, “With 

more than half of the world’s population now living in urban areas, this is the urban 

century.  Harmonious urbanization… has never been more important” (UN-HABITAT, 

2008, pg iii). As Ban Ki-moon observed, cities and towns now form the primary habitat 

for humanity, and improving their livability is vital.  

 The change from a rural to urban majority has not been temporally or 

geographically uniform throughout the world. Countries in Latin America, North 

America and Europe achieved urban majorities in the 1950s and 1960s, whereas nations 

in Africa and Asia will obtain an urban majority circa 2050. High urban growth rates are 

primarily phenomena of nations that are transitioning to industrialization; 53% of 

developing world cities are experiencing an annual growth rate between 2% and 4%.  

United Nations data from 2007 shows there were 19 cities on the globe with populations 

exceeding 10 million. By 2025, this list will grow to 26 cities with all the additional 

members located in Africa and Asia. In contrast, 40% of the cities in developed nations 

experienced a population loss between 1990 and 2000 (UN-HABITAT, 2008). While 

much of the increase in city population is due to natural increase, complex forces both 

“push” migrants from rural areas and “pull” them to cities. Push factors include land 

ownership conflicts, militant insurgency, government land grabs, crop failure, and 

population pressure. The primary attractant of cities is the perception of economic 

opportunity along with increased social services. Royuela et al. (2010) claims that urban 

areas exist because cities are the most economically efficient structure to distribute 

relationships among individuals. 
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The problems associated with urbanization form a well-known litany. Negative 

aspects of unmanaged urban growth include air pollution, traffic congestion, increased 

adolescent crime activity, poor or nonexistent housing for many, disease diffusion, loss of 

cultural/family identity, and inadequate green space for recreation (Royuela et al., 2010 

and deHollander and Staatsen, 2003). These are not just problems of developing 

countries, but difficulties associated with rapid urban growth in transitional and 

developed nations too. Given both the positive and negative aspects of urban life, it is 

critical to study the urban environment and its associated biophysical and social 

characteristics - especially the quality of human life in urban areas and geographical 

aspects impacting this urban quality of life. 

As the paragraphs above demonstrate, urban growth will be one of the central 

phenomena of the twenty-first century affecting humanity’s well being. Given the need to 

map, monitor, and measure this change, there is a corresponding need for technological 

solutions to do this rapidly over large areas using comparable methodologies. This thesis 

examines the potential to map urban change between two dates using simple change 

detection techniques performed on satellite imagery. Our primary interest is in detecting 

change at the periphery of existing urban centers. These periurban zones are areas 

experiencing poorly managed rapid growth, i.e. urban sprawl. Although the greatest 

potential for urban/periurban change detection methodology exists in world areas with 

developing economies, this thesis will present results from experiments conducted in the 

United States. This was a deliberate choice; for if these methods do not work in the 

United States where validation and calibration data are widespread and accurate, they 
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would likely not succeed in areas where such data is sparse and questionable. As such, 

the United States test case presented in this thesis represents a best-case scenario. 

(1.1) Urban Sprawl 

New construction during booming economic times in the US has always lent itself 

to the concept that more and more people, in pursuit of economic prospects and improved 

quality of life, contributed to growth in urban areas. Location, or the geography of 

opportunity, became a factor to determine virtually any aspect of the good life and 

people’s access to it in metropolitan America (Squires and Kubrin, 2005). In 2003 

America, urban growth and sprawl were almost synonymous and edge cities became the 

dominant urban form (Glaeser and Kahn, 2003). As implied above, urban sprawl is the 

uncontrolled or unplanned extension of urban areas and defined as a dispersed, auto-

dependent development outside compact urban centers (Vermont Forum on Urban 

Sprawl, 2003). Sprawl is typified by low-density settlement, often in erratic building 

patterns, located along highways in formerly rural areas, and consuming excessive 

amounts of land (Clarke, 2006). 

Like many controversial topics, urban sprawl has triggered an ongoing heated 

debate and continues to influence legislation. Since the economic downturn as a result of 

subprime underwriting and predatory lending in the first decade of the 21st century, many 

neighborhoods once booming with prosperity and urban development evolved into 

foreclosure ghost towns. Half of the United States has enacted laws against predatory 

lending, reducing the ability for homebuyers and developers to purchase homes and land 

they would have qualified for previously. In addition, many states, driven by negative 

factors resulting from urban sprawl, have adopted comprehensive growth management 
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legislation in an effort to regulate land development more directly (Howell-Moroney, 

2007).    

Besides its effects on policy, urban sprawl has negatively impacted land and 

natural resources, infrastructure, real estate development costs, travel and congestion, 

social policy, and quality-of-life (Burchell et al., 2005). Other activists suggest that the 

outward expansion of metropolitan areas, particularly given the automobile-dependent 

lifestyle it nurtures, increases air pollution and a range of diseases including asthma, lung 

cancer, and heart problems (Squires, 2002).   

Despite its negative effects, many researchers view this trend towards increasing 

urbanization positively, stating the negative quality-of-life impacts are overstated and that 

effective vehicle pollution regulation has mitigated emission increases associated with 

increased driving (Glaeser and Kahn, 2003). Consumers apparently agree. In 1999, the 

National Association of Homebuilders asked two thousand randomly selected households 

to choose between a large single-family home in the suburbs with a longer commute and 

a townhouse in the city close to transportation, shopping, and work. Eighty-three percent 

of respondents chose the larger, suburban or periurban home.  This preference for 

suburbia has dominated development throughout the United States because it provides 

residents with benefits they value (Burchell et al., 2005). 

Regardless of the controversy, many studies agree that urban areas grew 

significantly over the last fifty years, though both sides disagree over how to measure and 

interpret its significance (Clarke, 2006). Undoubtedly, the need for such information is 

valuable as the geography of urban growth offers a graphic depiction of the interplay 

between economics, political systems, and the environment (Masek et al., 2000).  As 
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human and natural forces modify the landscape, government agencies struggle to monitor 

and assess these alterations. Changes in vegetation affect wildlife habitats, fire 

conditions, aesthetic and historical values and ambient air quality that, in turn, influence 

management and policy decisions (Levien et al., 1998). Changes to the urban landscape 

due to prolonged protests, civil unrest, and even war can also dramatically affect the 

distribution of critical necessities to life (e.g. water, food, sanitation, etc.) and the 

import/export of vital resources. Near real-time information that can provide answers to 

the dynamic processes within urban and periurban regions is of immense value to 

planners and administrators (Ahmedabad et al., 1997) as well as heads of state, 

emergency response officials, and military operations. 

(1.2) Monitoring Urban Growth with Satellite Remote Sensing  

As a result of the unprecedented global shift towards urbanization, a variety of 

methods have been used to detect, track, measure, and assess urban change. Imhoff et al. 

(1997) stated that the use of satellite remote sensing is an obvious corroborative 

methodology for measuring and monitoring the location and extent of urbanization and 

city growth.   

Remote sensing is defined as a method used to acquire information about the 

earth, usually from aircraft or satellites. The information usually acquired on-board the 

satellite is digital imagery which is subsequently transmitted to earth where analysts use a 

variety of statistical methods to convert the imagery into informational products such as 

maps and reports. Satellite remote sensing provides globally consistent, repetitive 

measurements of the earth’s surface relevant to land cover monitoring (Masek et al., 

2000) and delivers timely, cost-effective information that conventional methods of urban 
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data acquisition and survey (e.g. census data, aerial photography) simply cannot provide.  

In addition to time and cost efficiency, remote sensing is a unique view of the spatial and 

temporal dynamics in urban growth and land use change (Herold et al., 2003 and Xiao et 

al., 2006).  

Because of these advantages, satellite remote sensing techniques have been 

widely used in detecting and monitoring land cover change at various scales (Xiao et al., 

2006). Stated more formally, change detection methodologies are used to identify 

differences in the state of an object or phenomenon on successive images observed at 

different times and can be applied widely to examine changes in the environment (Singh, 

1989 and Lu et al., 2004). Many of these change detection methods exist, but no single 

method is a standard for all research applications. It is a maxim in remote sensing that 

every target is different, and analyzing it requires both elements of art and science. The 

maxim holds for change detection. Each change detection project is unique and must 

cope with peculiar attributes that are original to target, project specifications, or image 

availability. When faced with a specific scenario where change detection is required, the 

selection of an appropriate methodology has considerable impact on the accuracy and 

usability of the final detection product (Lu et al., 2004). Because different change 

detection algorithms produce different results, experiments where several methods can be 

applied to the same area and compared may be a useful starting point to examine relative 

strengths and weaknesses of each method. While such experiments would not be able to 

answer the question of which approach is universally optimal, they may be able to 

illuminate the relative drawbacks and advantages of each approach over a constant target.  

In addition, using multiple change detection methods over one study may provide a 
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measure of guidance for future researchers performing change detection over similar 

targets. This potential has limits. For example, change detection methods successful for 

Chicago, Illinois may also prove successful for St. Louis, Missouri or Detroit, Michigan 

but may fail if applied to San Antonio, Texas or Reno, Nevada because of their different 

geographic contexts. 

(1.3) Research Hypothesis and Objectives 

 This research was designed to use satellite remote sensing technology in 

combination with a variety of change detection methods to detect, measure, and map 

urban change of the greater Las Vegas area between 1990 and 2000. Imagery from the 

Landsat Thematic Mapper (TM) sensor acquired in those two years would be used as 

data. It began with the research question, “What are the relative benefits and drawbacks 

of each change detection method?” We hypothesized that while all of the methods tested 

would detect the majority of urban change within the study area, each method would 

suffer from the problem of “change threshold specification.”  This meant that each 

method would require that an arbitrary decision be made by the practitioner as to what 

amount of change (as numerically measured by the method) constituted genuine and 

practically significant change on the ground. This problem is akin to the difficulties 

experienced by statistical researchers who are faced with the necessity of choosing a level 

of alpha to either accept or reject a null hypothesis in a social science context.  In some 

situations, choosing one or another of the usual alpha values (e.g. 0.05, 0.01, and 0.005) 

generates different conclusions vis-à-vis reject or accept the null.    

With the research question and hypothesis in-mind, this thesis addresses the following 

objectives:  
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• To assess urban change in Las Vegas between 1990 and 2000 using five change 

detection methods popular in satellite remote sensing. 

• To compare the results of the five change detection methods by first, determining 

the success of the method in capturing change between 1990 and 2000 and 

second, determining how well each method performed relative to each other. 

• To address the problem of change threshold specification by introducing a simple 

computer method whereby that specification can be done objectively.  

This research constitutes a study of methodology, not a study of urban change 

itself.  Thus, while meeting the objectives necessitates some discussion of different land 

cover types in Las Vegas, it is not intended as an exhaustive discussion on land cover 

change in Las Vegas per-se, i.e. its historical causes, geographical patterns, and 

contemporary consequences.  In other words, this thesis represents a discussion of change 

detection methodology in an urban setting using Las Vegas as the study site, but does not 

represent itself as a historical study of Las Vegas between the year 1990 and 2000.  

(1.4) Significance 

In addition to the savings in resources and time, the study of urban change 

detection in an arid environment and its methodologies provides a detailed foundation for 

urban planners and policy makers to make educated decisions that may impact natural 

resources, surrounding environments and natural habitats, quality of life, and 

infrastructure needs for communities.   

Beyond these necessary and vital applications of change detection methodology 

domestically is the impact that such research could have for US policy in support of the 

war fighter abroad. Since 9/11 the United States has engaged in the War on Terrorism 
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that has taken this country’s war fighters to two separate fronts: the Afghanistan/Pakistan 

border and Iraq. More recently, the Arab Spring has caused a US presence in Libya with 

potential for boots on the ground in Syria and Yemen. The study of change detection 

methodologies in this thesis is unique in that the results focus on a study area in the desert 

regions of the greater Las Vegas area. Similarly, the various fronts engaged in by the 

United States possess similar physical geographies sensitive to terrorist operations, 

training, and planning as well as state governments attuned to their objectives. The 

application of the change detection methods used in this thesis are beneficial to those 

studying the movement, development, and patterns of terrorists and other independent 

entities in regions with similar geography and may provide answers and direction for 

future applications to support the war fighter and intelligence community alike.  

(1.5) Structure of Thesis 

This thesis will proceed in the following manner.  Chapter 2 presents a general 

review of literature detailing change detection studies and methods used to measure and 

evaluate land cover change using satellite remote sensing.  Chapter 3 describes data, 

methodologies, and results of this study. Finally, Chapter 4 provides a discussion and 

conclusion with possible directions for future research. 
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Chapter 2:  Literature Review 

(2.1) Change Detection Methodologies in Remote Sensing 

In recent decades the role of satellite remote sensing has expanded at an 

accelerating rate as human populations grow and occupy ever-increasing space on the 

earth’s surface (Ridd and Hipple, 2006). Though changes to the earth’s surface are 

caused by both anthropogenic and natural factors, the human digital footprint and 

influence on the earth as captured by satellite remote sensing is detectable, quantifiable, 

and worthy of examination.  As mentioned in the previous chapter, satellite remote 

sensing is the science of obtaining information about the earth’s surface features in a 

raster image format on a periodic basis from spaceborne or airborne instruments.  As 

such, it provides a means for the mapping, monitoring, and modeling dynamic elements 

of Earth’s surface at regular intervals (Srvastava, 1990). Acquisition of such information 

via satellites also provides spatially consistent data sets that cover large areas with spatial 

detail and temporal frequency (Xiao et al., 2006).  Example sensors providing this cost-

effective multi-spectral and multi-temporal data include the Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER), Advanced Very High 

Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer 

(MODIS), Satellite Probatoire d’Observation de la Terre (SPOT), Thematic Mapper 

(TM) and RadarSat.  All of these sensors have become a common data source for 

comparative studies at both temporal and spatial scales (Yu and Ng, 2006). 

Thus, satellite remote sensing, as a widespread and effective data source, lends 

itself to a variety of change detection applications, studies, and methods. Singh (1989) 

defined change detection as the process of identifying differences in the state of an object 
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or phenomenon by observing it at different times.  Change detection of the earth’s surface 

using satellite remote sensing has been used to examine several dynamic phenomena: 

• Natural forest ecosystems (e.g. Coppin and Bauer 1996) 

• General landscape change (e.g. Yu and Ng 2006) 

• Coastline shifts for environmental management (e.g. Li and Damen 2010) 

• Wetland protection and development (e.g. Klemas 2011) 

• Land use and land cover change detection of wildlife habitat (e.g. Rahdary et 

al. 2008) 

• Environmental degradation processes due to war (e.g. Jabbar and Zhou 2011), 

• The growth of urban sprawl (e.g. Davis and Schaub 2005).  

(2.2) Change Detection Methodologies in Urban Environments 

Because of its interactions with climate, ecosystem processes, biogeochemical 

cycles, biodiversity, and human activities, one of the most common applications of 

remote sensing has been land use/land cover (LULC) change detection (Xiao et al., 

2006). Land use can be defined as how the human population utilizes the earth, such as 

agriculture or urban development.  In comparison, land cover is the actual physical 

material found at the earth’s surface, such as conifer, water, asphalt, savanna, etc. The 

categories of land cover vary from map to map depending on what an analyst is 

examining.  NASA’s Earth Observatory (2012) has stated that the only requirement for 

any land cover category is that it has a distinct spectral signature that a satellite can 

record.  Essentially, LULC change detection is used to determine the type, amount, and 

location of any LULC difference that has occurred within a specific timespan (Yeh, 

1997). Urban sprawl mapping, monitoring, and modeling are the usual goals of LULC 
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change detection projects in an urban setting (Ahmedabad et al., 1997). With repetitive 

synoptic viewing capabilities, efficiency and economical value, satellite remote sensing is 

a powerful tool to detect and map emerging changes in the urban core and peripheral 

areas of any urban entity (Ahmedabad et al., 1997). Mapping change in the peripheral 

areas is particularly important. Depending on the global location, these are the areas 

where important agricultural land may be destroyed, where a societal underclass may 

create temporary slum housing, where important water resources may be fouled, where 

sensitive species may be encountered, where land ownership may be poorly documented, 

or where building and development may be poorly regulated.   

Despite the number of studies of urban change detection analysis, a consensus 

regarding the best methodology has not emerged (Almutairi and Warner, 2010).  This is 

due in part to the nature of the urban target itself.  In highly urbanized areas, identifying 

the extent of urban sprawl can be challenging.  The number of mixed signature pixels 

increases as the land cover types increase, and is inversely related to spatial resolution.  

This complex process is characterized by the presence of numerous 
surface materials in relatively small regions.  The features in these 
urban scenes contribute to the reflected radiance and are difficult to 
detect by coarse sensors. Urban areas are typified by intricate 
mixture of materials ranging from concrete, wood, tiles, bitumen, 
metal, sand, and stone.  The spatial distribution of these materials 
is not regular and is compounded by rapid temporal changes that 
occur in the urban landscape over a very short period of time 
(Bhaskaran and Datt, 2000).  
 
As spatial resolution affects the heterogeneity of land cover classes in studies of 

densely suburban metropolitan regions, small problems can become magnified: trees on 

lawns are confused with forest classes; grassy areas are common in pasture, recreation, 

and institutional classes; and pavement is common to both high-density residential and 
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commercial/industrial areas (Epstein et al., 2002). Due to the complexity of urban areas 

and the variety of classes within each pixel, uncertainty between classes that contain 

similar components is frequent. This further complicates the process to find an effective 

change detection method for urban applications. However, Lu et al. (2004) stated that 

different change detection algorithms have their own merits and that no single approach 

is optimal or applicable to all cases. Therefore in practice, an analyst should select several 

methods to implement change detection in a study area and then compare and identify the 

best results through accuracy assessment (Lu et al., 2004). Because experimentation is 

warranted, knowledge of common and effective change detection methods is needed by 

the change detection researcher. 

(2.3) Image Pre-processing: Preparing Imagery for the Change Detection Process 

Prior to applying a change detection algorithm, appropriate pre-processing of the 

remote sensor data is required. Only imagery that has been accurately georegistered, 

normalized, and subset into processing areas can be submitted to the change detection 

process (Levien et al., 1998). To speak more precisely, the following conditions must be 

satisfied: (1) precise registration of multi-temporal images; (2) precise radiometric and 

atmospheric calibration or normalization between multi-temporal images; (3) similar 

phenological states between multi-temporal images; and (4) selection of the same spatial 

and spectral resolution images if possible (Lu et al., 2004).  

The first condition is more commonly called geometric correction or spatial 

registration. This step is crucial to the success of a change detection algorithm because it 

ensures that a pixel at one date overlaps the identical pixel on the second date (Townsend 

et al., 1992 and Macleod and Congalton, 1998). Poor spatial registration can cause errors 
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in the final results. For example, a misregistration of just one pixel may cause a stable 

road on the two dates to show up as a new road in the change image (Jensen, 2005).  

The result of the second condition, radiometric calibration, is that units become 

constant between images. Calculation of radiance is the fundamental step in putting data 

from multiple sensors and platforms onto a common radiometric scale (Chander et al., 

2007). Additionally, removing any effects of the atmosphere from the imagery allows for 

the interpretation of the image data to be consistent and continuous.  

The third and fourth conditions to be met prior to the application of any change 

detection method are the selection of similar phenological states between multi-temporal 

images and the selection of the imagery with the same spatial and spectral resolution, 

respectively. Obtaining near-anniversary images greatly minimizes the effects of seasonal 

phenological differences that may cause spurious change to be detected in the imagery 

(Jensen, 2005). Additionally, the assumptions behind the change detection processes are 

challenged when the spectral range of a band from one sensor system does not match that 

of another system.  In such a case the analyst is left hopelessly comparing apples to 

oranges. Moreover, selecting imagery from different dates with different spatial 

resolution may not just harm the change detection result, but will cause for significant 

pre-processing headaches to ensure both images are truly comparable.  

(2.4) A Review of Common Change Detection Methods  

Various digital algorithms have been developed for change detection in remote 

sensing.  Some have grown in popularity, whereas others are peripheral to the 

mainstream of topic. Combining observations by Singh (1989) and Liu et al. (2004), 

popular methods include the following: 
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• Image differencing 

• Image ratioing 

• Image regression 

• Vegetation index differencing 

• Principal component analysis (PCA) 

• Multi-date classification* 

• Post-classification comparison* 

• Change vector analysis*  

• Background subtraction 

Examining these varied techniques remains an active research topic due to the 

efficacy and efficiency in employing these methods. Even more so, it reflects the unique 

spatial and spectral attributes of different earth locations that demand different remote 

sensing approaches.  As a result, the literature does not reflect a “go-to” algorithm for 

change detection applications across the board.  

Many of the methodologies listed above have been comprehensively reviewed 

(Singh 1989, Coppin and Bauer 1996, Liu et al. 2004, Lu et al. 2004). In this research we 

will only examine change detection methods yielding change/no-change results.  This 

excludes change detection methods that require land use classification as a prior step.  

These are marked with an asterisk in the list above.1  The reason we exclude these 

methods is to avoid the necessity of discussing and managing the challenges inherent in 

land cover classification itself (Hardin and Hardin, 2013) which are multiplied when two 

                                                
1 In making this exclusion, we admit that these land cover-based methods do provide change/no-change 
information (Jensen, 1981), although this is seldom the sole goal of the researcher using these approaches 
since much more economical approaches exist. 
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dates of imagery are examined. This deliberate exclusion effectively limits the scope of 

the research to a manageable level.   

In order to keep the remaining popular change detection methods in their proper 

theoretical families, they can be grouped into two categories: (1) Algebra and (2) 

Transformation. For the two categories, family member descriptions, advantages, 

disadvantages, and supporting literature are provided in Table 1. The majority of the 

techniques reviewed for change detection utilized data with moderate spatial resolution 

such as Landsat MSS, TM, or SPOT. 

(2.4.1) Algebra 

The algebra category includes the following methods: image differencing, image 

ratioing, image regression, and vegetation index differencing. These techniques share two 

common characteristics. First, they each involve the mathematical combination of 

imagery from different dates (Mas, 1999). Second, they require the selection of 

thresholds to determine the changed areas (Lu et al., 2004). This second characteristic is 

a distinct disadvantage.  We admit that selecting suitable image bands and ensuring that 

critical geographic registration and radiometric normalization can help to limit the 

problems of threshold determination, but suitable band selection cannot eliminate it. 

Threshold selection introduces an obnoxious complication into change detection 

methodology. It requires that the researcher specify a numerical cutoff value. Image 

values below the cutoff are designated “no change” whereas image values above the 

cutoff value are classified as “change.”  In our experience, there is no natural cutoff value 

depicted in a histogram to help the researcher. If the cutoff value is set too high, then 

bona fide change is not recorded in the final map.  If the cutoff value is set too low, then 
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false positives result, i.e. areas are marked as changed where no substantive change 

actually occurred. 

When selecting which spectral bands to use for each change detection method, 

most textbooks present the selection as a critical and pressing issue. Use of the infrared or 

red bands is considered the best practice for most targets. While this may simplify 

matters, there really is no obvious necessity to select the “best” image band for change 

detection at all. Instead, a better approach would be to repeat the change detection on 

several of the available bands and use the individual results as a self- or cross-validation. 

Alternatively, they could be treated heuristically as three separate judges of change, and a 

voting strategy might be implemented to make the final decision of altered/not altered 

from among the several results. We find it puzzling that this approach is not common in 

the literature.  

(2.4.1.1) Image Differencing 

In this method, registered images acquired at different times are subtracted, pixel 

by pixel, to produce a residual image composed of the numerical differences between the 

pairs of pixels (Mas, 1999, and Ridd and Liu, 1998). Mathematically, 

 Dxk
iy = xk

ij(t2) –  xk
ij(t1) 

where xk
ij = the pixel value for band k, and i and j denote the line order and column order 

of the pixel in this image pair, t1
 = first date and t2 = second date (Singh, 1989 and Liu et 

al., 2004). Values in the residual image that equal zero reflect areas of no change, or 

equal reflectance, in both images. When the results are displayed using common 

statistical graphics, this technique produces a histogram with a difference distribution for 

each band. A critical element of the image differencing method is deciding where to 
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place the threshold boundaries between change and no-change pixels displayed in the 

histogram (Singh, 1989). While selecting the threshold properly can be difficult, when 

done correctly, it should help remove differences within the imagery that were present 

due to variation in bidirectional reflectance and differences due to atmospheric effects 

(Quarmby and Cushnie, 1989).    

 According to Singh (1989), image differencing is the most widely used technique 

for change detection and has been used in a variety of geographical environments. Sunar 

(1998) applied the image differencing technique to detect land cover changes and 

development pressures in Istanbul, Turkey.  In that study, the researcher found that image 

differencing to be “relatively straightforward” and did not require significant a priori 

knowledge of the scene and the application. Quarmby and Cushnie (1989) also applied 

this technique in southeast England to monitor urban land cover changes at the urban 

fringe. The authors used the technique successfully with the ability to “delineate areas of 

change in land use from rural to urban development.” However, using TM bands two and 

four, Mas (1999) found this method to be inferior to other algebraic and post-

classification procedures. Nonetheless, in a comparative method study, Lu et al. (2004) 

found this technique to be “simple” and “easy to interpret” as well as suitable for 

identifying image bands and thresholds. 

(2.4.1.2) Image Ratioing 

 This technique is similar to the image differencing method with regards to its 

straightforward application and disadvantages, though it is not as widely used. Like the 

image differencing technique, the image ratio method is also a pixel by pixel operation 

that compares two images by use of a simple mathematical operator (Liu et al., 2004). 
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The formula is simple;  

rij = xij(t1) / xij(t2) , 

where rij is the ratioed value (Liu et al., 2004). Values in the quotient image that equal 

one indicate areas of no change (i.e., equal reflectance on both dates), while change is 

recorded as values greater than or less than one. In one project, Lu et al. (2004) stated 

that image ratioing reduces the impacts of sun angle, shadow and topography while 

Prakash and Gupta (1998) stated that the use of image ratio made no marked 

improvement over other methodologies as applied in a coral mining area in India. Nelson 

(1983) examined the use of image ratioing to detect gypsy moth defoliation and found 

that a difference of the MSS7/MSS5 ratio was more useful in the delineation of said areas 

than any single band-pair ratio. Stow et al. (1990) also found that image ratio was a 

useful land-use change technique and that by ratioing red and near-infrared bands of a 
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Landsat MSS–SPOT multi-temporal pair produced about 10% higher change detection 

accuracy than ratioing similar bands of a Landsat MSS–Landsat TM multi-temporal pair. 

As mentioned above, this technique is not as widely used as others.  Perhaps it is 

because this technique can produce a histogram with a non-normal distribution, 

increasing the challenge in selecting a threshold between change and no change. If the 

distributions are non-normal and functions of the standard deviations are used to delimit 

change from no change, the areas delimited on either side of the mode are not equal; 

therefore, the error rates on either side of the mode are not equal (Singh, 1989). 

Nevertheless, Robinson (1979) and Singh (1989) recommend that the further studies of 

the ratioing method under a variety of conditions would be useful. 

(2.4.1.3) Image Regression 

 In image regression, the brightness values from one multi-temporal image are 

assumed to be a linear function of the values of the same area at another time (Liu et al., 

2004). This suggests that a majority of the pixels experience no change between the two 

dates. Given this assumption, this method regresses xk
ij(t1) against yk

ij(t2) using a 

regression function that best describes the relationship between pixel values of each 

spectral band from the two dates. Ordinary least squares is typical, although not 

mandatory (Berberoglu and Akin 2009, Ridd and Liu 1998, and Liu et al. 2004). A 

simple bivariate linear regression function may be written as: 

yk(t2) = mxk(t1) + b, 

where pixels of band k from t1 are represented by the independent x and the pixels of band 

k  from t2  are represented by the dependent y. Coefficients m and b are the slope and 

intercept, respectively. In change detection, the slope value is usually close to one.  The 
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intercept can vary widely. Both the slope and intercept have interpretations related to 

atmospheric distortion, sun angle, and other factors. In change detection, the residuals are 

the primary product of interest. Once the regression between band pairs is run and 

coefficients are determined, the residuals are then computed using the image difference 

formula where reij  is the final transformed value in the residual image and y^k
ij (t2) is the 

predicted values for the second date. 

reij = y^k
ij (t2) – xk

ij (t1) 

The residuals of the regression function are considered to represent the areas of change 

(Theau, 2008). Like the other methods in the Algebra category, image regression requires 

the selection of a threshold to determine pixels of change and no change.  

 According to Berberoglu and Akin (2009) and Theau (2008), this technique 

reduced the effects of radiometric heterogeneity (i.e. atmospheric conditions, Sun angle, 

and sensor calibration. In a comparison study, Madanian et al. (2012) used image 

regression, image ratioing, and image differencing to monitor LULC change in Isfahan, 

Iran. The authors concluded that image regression yielded the least overall accuracy and 

did not provide detailed information about the kinds of land cover change detected. 

However, Ridd and Liu (1998) compared image differencing, image regression, the 

Kauth-Thomas transformation, and the Chi-square transformation for urban land-use 

detection in the Salt Lake Valley and concluded that image differencing and image 

regression were the best methods using Landsat TM band 3. However, the authors also 

stated that none of the algorithms used was overwhelmingly superior to the other. 

(2.4.1.4) Vegetation Index Differencing 

Vegetation indexes are popular in remote sensing, and several exist.  See Jensen 
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(2005) for a complete introduction. Speaking generally, vegetation indexes are used to 

quantify the amount, health, moisture status, phenological stage, or photosynthetic 

activity of vegetated surfaces, both natural (e.g. grassland) or anthropogenic (e.g. 

cropland). Vegetation index differencing is a simple, straightforward technique used to 

assess whether or not the study target has changed in amount, health, etc. Historical 

inertia, as well as the positive characteristics of the Normalized Difference Vegetation 

Index (NDVI) has made it the vegetation index of choice in many applications. As 

defined by its originator Rouse (1974), 

NDVI = (NIR – RED) / (NIR + RED) 

where NIR is the near-infrared band response for a given pixel and RED is the red band 

response (see also Mas, 1999). This NDVI equation produces values in the range from −1 

to 1, where positive values indicate vegetated areas and negative values signify non-

vegetated surface features (Yuan and Bauer, 2006). When used in change detection, the 

vegetation index is first calculated on a pixel-by-pixel basis for both dates separately.  

Subsequently, the second-date vegetation index is subtracted from the first-date 

vegetation index (Lu et al., 2004). Like the other methods discussed above, determination 

of a threshold to highlight areas of change and no change is required. Though this method 

is typically applied in studies to assess the maturation, health status, expansion or even 

reduction of vegetation, it is also useful for urban change applications due to its ability to 

highlight impervious surfaces or a shift from pervious (i.e. vegetated) to impervious (e.g. 

urban concrete) conditions.  

Nelson (1983) tested the method quantitatively in the study of gypsy moth 

defoliation in Pennsylvania. His results indicated that of the three change detection 
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methods applied (image differencing, image ratioing, and vegetation index differencing), 

the latter most accurately delineated forest canopy change. Thanapura et al. (2006) used 

this technique to map impervious area and open space with an overall accuracy of 92%. 

Moreover, Lu et al. (2004) found that vegetation index differencing emphasizes 

differences in the spectral response of different features and reduces impacts of 

topographic effects and illumination. Alternatively, Lunetta et al. (2006) found some 

indication of the inherent noise level in a study of land cover change in the Albemarle-

Pamlico Estuary System region of the US as well as an overestimation of change area. In 

another project, Singh (1989) stated it is difficult to draw any firm conclusion about the 

capability of this technique. 

(2.4.2) Transformation 

For the sake of this research, the transformation category of change detection 

methods contains the following single approach: principal components analysis (PCA). 

While other transformations do exist (e.g. Tasseled-Cap transformation), PCA is the most 

common. Other transformations such as multivariate alteration detection or Gramm-

Schmidt transformation have also been developed though they are used to a much lesser 

extent by most practitioners, and are virtually nonexistent in commercial image 

processing software (Theau, 2008). 

(2.4.2.1) Principal Components Analysis 

 Principal components analysis is a type of linear transformation that is often used 

to reduce spectral data dimensionality by creating fewer new components (Theau, 2008). 

This technique can be applied in two ways: (1) put two or more dates of images into a 

single file, then perform PCA and analyze the minor component images for change 
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information; and (2) perform PCA separately, then subtract the second-date PC image 

from the corresponding PC image of the first date (Lu et al., 2004). After performing a 

PCA, unchanged areas are mapped in the first or second component (i.e. information 

common to multi-date images) whereas areas of changes are mapped in the last 

components (i.e. information unique to either one of the different states) (Theau, 2008).  

The assumption for this is that areas of change occupy only a minor proportion of the 

entire study area and therefore are not reflected in the first two components which explain 

most of the variation (Yeh, 1997). We note that in change detection PCA is usually 

performed using the variance-covariance matrix rather than the correlation matrix (Singh, 

1989). 

In a review of the method, Theau (2008) found the accuracy of change detection 

via PCA was highly scene dependent and difficult to interpret.  Similarly, Stow et al. 

(1990) found that ratioing multi-sensor, multi-temporal satellite image data produced 

higher change detection accuracy than PCA.  Moreover Toll et al. (1980) and Singh 

(1989) reported that principal components transformation used for urban change 

detection produced lackluster change detection results compared with image differencing 

of band 2 or 4 (sensor unspecified). However, not all results using PCA have been 

negative. Byrne and Crapper (1980) monitored land cover changes in Bay, New South 

Wales using PCA and stated that the method was an effective way to identify areas of 

change. Additionally, Ceballos and Bottino (1997) discovered that when applying a 

simple cluster method on two principal components, various types of vegetative 

landscape could be discriminated with a quality similar to the use of all six bands.  

(2.4.3) Summary of Literature and Conclusion 
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A thorough review of the literature does reveal that each of these change/no-

change methods for determining change using remote sensing have potential to succeed 

in multiple environments when caution is exerted towards their challenges and their 

advantages exploited. The majority of these change detection methods are simple to 

execute and straightforward in their application and analysis, though each requires 

attention to the selection of thresholds to accurately determine areas of change/no-

change. This is of note when the purpose of the change detection is for a quick, clear 

result, such as in emergency response, military operations, or national security. As 

mentioned previously, none of the methods selected for this study will provide a detailed 

“from-to” explanation of change, but a simple analysis examining change/no-change 

results. While other research studies do examine multiple change detection 

methodologies over a study area, such as Lu et al. (2004), Mas (1999), or Singh (1989), 

in my review of the literature, a study of simple change/no change methodologies for the 

purpose of streamlining the selection process for others in need of quick, accurate 

techniques does not exist.   

This study of five change detection methods of the greater Las Vegas 

metropolitan area to detect urban growth will attempt to answer the question “What are 

the relative benefits and drawbacks of each change detection method?” and help narrow 

the scope for analysts in need of a fast, uncomplicated algorithm to assist them in 

identifying change in urban settings set in environments with similar physical and 

geographic characteristics, i.e. urban areas experiencing growth or change in desert 

climates. 
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Chapter 3:  Data, Methods, and Results  

 This thesis had three objectives. The first objective was to assess urban change in 

a desert study area between 1990 and 2000 using five change detection methods popular 

in satellite remote sensing. The second objective was to compare the results of the five 

change detection methods by determining the success of the method in capturing change 

between 1990 and 2000 and then determining how well each method performed relative 

to one another. The last objective was to address the issue of change threshold 

specification by introducing a simple computer method whereby that specification could 

be done objectively.  

(3.1) Study Area 

 The Las Vegas valley in southern Nevada encompasses approximately 621.4 mi2 

or 1,609 km2 and is surrounded by the Spring and Sierra Nevada mountain ranges, with 

Mount Charleston located to the northwest. The vegetation in the valley is sparse though 

it can be found more abundantly in the landscaping of urban areas. Even so, native stone 

and crushed rock are widely used for landscaping as well as gravel, concrete, and other 

xeriscape methods which employ small amounts of photosynthesizing vegetation (Xian et 

al., 2008). Located along the 36th parallel, the Las Vegas valley is characterized by a 

desert climate with extremely hot, dry summers and relatively cool, wet winters.  

 The Las Vegas valley includes the cities of Las Vegas, North Las Vegas, 

Henderson, and Boulder City within Clark County (see Figure 3.1). According to the Las 

Vegas government (2012), the city was founded on 15 May 1905 after the population 

rose due to the completion of a main railway linking Salt Lake City with southern 

California and with the availability of water, Las Vegas became a major refueling point 
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and rest stop. With legalized gambling in 1931 and the subsequent completion of the 

Hoover Dam, the population continued to grow into the following decades. Following 

WWII, luxurious hotels and casinos began to appear and tourism became the number one 

employer in the valley (Las Vegas Government, 2012). The region experienced 

remarkable growth as the population increased from less than 50,000 in Clark County in 

1950 to more than 1.37 million in 2000 (Clark County, 2005). As of the 2010 census, the 

population of the Las Vegas metropolitan area in Clark County stood at 1,951,269, a 

marked increase of 41.8% since 2000. Associated with the population increase is the 

growth in residential and commercial development in the area (Xian et al., 2008). 

Housing units reached approximately 540,000 in 2000 and single-family detached 

housing and apartments comprised 53.3 percent and 27.6 percent, respectively of total 

housing units in the urban area (Xian et al., 2008). Such marked changes to a desert 

landscape in a relatively brief period of time provide for ideal study conditions for the 

application of change detection methodologies. 

(3.2) Data 

 Two images for this study were acquired from the U.S. Geologic Survey’s Earth 

Explorer (www.earthexplorer.usgs.gov). The images were captured using the Landsat 

Thematic Mapper (TM) sensor on 16 May 1990 and 11 May 2000 (see Figure 3.2). 

Consistent with best practices in change detection studies, anniversary dates were 

employed to reduce potential challenges from sun angle differences and vegetation 

phenology changes (Singh, 1989). Landsat TM data was selected for this study as this 

platform was designed and continues to operate with the objective of tracking changes in 

land cover conditions (Masek et al., 2000). In fact, the Landsat dataset is the only long-  
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Figure 3.1 The Greater Las Vegas Metropolitan Area (https://maps.google.com, 2012) 

 

 

Figure 3.2 Landsat TM Image Data 
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term digital archive with a medium spatial resolution and relatively consistent spectral 

and radiometric resolution (Yang et al., 2003). Landsat TM features seven bands of 

image data, three in the visual spectrum and four in the infrared. All bands possess an 

instantaneous field of view (IFOV) of 30 x 30 meters with the exception of the thermal 

infrared band’s IFOV of 120 x 120 meters. However, for this study, bands 2, 3, and 4 (i.e. 

green, red, and near-infrared respectively) were utilized.  

 For each test site, the regions comprising the cities, suburban development, and 

urban expansion were subsetted to produce the test data (see Figure 3.3). For the Las 

Vegas valley this was easy to distinguish and accomplished by visually examining the 

line between urban and desert. A mask layer was created by hand to exclude all pixels 

outside the study area. In all the reported statistics, these masked-out pixels are ignored. 

 

Figure 3.3 Las Vegas, NV study area. 
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(3.3) Image Pre-processing 

 Prior to receiving the study imagery from the USGS Earth Explorer, both images 

were geometrically registered. Examination of the image metadata revealed that both 

images were resampled to a Universal Transverse Mercator (UTM) projection and 30 by 

30-meter pixels using the cubic convolution transformation technique, with a root mean 

square error of less than 0.135, or less than 1 pixel. After a side-by-side visual inspection 

of both images, it was clear that the two datasets coregistered exactly, pixel by pixel. As a 

result, no further georeferencing methods were required.   

Manual radiometric calibration for both images was required to ensure the 

imagery was set to a common scale. Both Landsat TM images were calibrated to 

exoatmospheric reflectance (rp) using the following algorithm: 

rp =(π * LI * d2) / (ESUNI * cosqs) 

where LI is the spectral radiance, d is the Earth-Sun distance in astronomical units, ESUNI 

is the mean solar exoatmospheric irradiance, and qs is the solar zenith angle in degrees. 

ESUNl is derived from tables provided in the Landsat Technical Notes (August 1986). 

This calibration process was executed by following a help file for Landsat TM 

Calibration in the Exelis ENVI geospatial image processing software. The result of 

radiometric calibration is that units (i.e. percent reflectance) were comparable between 

the two images. 

(3.4) Validation Data: Ground Truth 

In most remote sensing, the gathering of ground truth data is necessary.  Ground truth 

data forms a control for what is being modeled in the imagery.  In this research the 

ground control data was used for both calibration and validation.  The calibration ground 
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control data was used to set the threshold for change / no change using the iterative 

method described below. The validation set was used to provide an uninflated measure of 

change detection on a second set of points. The use of separate calibration and validation 

sets is common in scientific studies that use regression methods, i.e. one set of data is 

used to determine the coefficients of the regression equation whereas the second set, 

submitted to the calibrated regression equation, provides an accurate measure of its 

predictive value.    

In this study, 500 points were chosen at random throughout the study area to 

assess points of actual change. Using images from 1990 and 2000 as references, it was 

manually recorded for each of these points whether the land cover changed or not. These 

points were divided into two sets of 250 points each, a set for calibrating the threshold 

and a cloistered set for assessing the accuracy of the calibrated model. 

 The images used to generate these sample points are worthy of note. The 1990 

reference image was a mosaic of DOQ’s (digital orthophoto quadrangles) from 1990 and 

1994 (see Figure 3.4) as acquired from the U.S. Geologic Survey’s Earth Explorer 

(www.earthexplorer.usgs.gov). Because this mosaic contained images from 1994 but was 

used as the 1990 reference image, the possibility exists that change during the years of 

1990 and 1994 may have been incorrectly marked as no change. As a result, 31% of the 

1990 reference points came from the 1990 DOQ, while the remaining 69% came from 

1994. Additionally, the original spatial resolution was 1-meter, but the image was 

resampled up to 7.5-meter spatial resolution for increased ease in comparing the two 

dates. 

 Similarly, the 2000 reference image, also acquired from the USGS Earth 



www.manaraa.com

 34 

Explorer, was captured using the Landsat 7 or Enhanced Thematic Mapper Plus sensor 

using the pan-sharpened band, i.e. band 8. Spatial resolution of this reference image was 

15 meters. Please see Figure 3.5 for reference. 

(3.5) Implementation of Change Detection Methodologies 

 (3.5.1) Image Differencing 

 In this study, the 1990 image was subtracted from the 2000 image. The absolute 

value of this method was then computed. This step removes the direction (positive or 

negative) that reflectance changed between the two years yielding the magnitude of  

 

 

Figure 3.4 1990 Reference Image 
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Figure 3.5 2000 reference image. 

change in reflectance. Thus, values greater than zero indicate magnitude of change in 

percent reflectance since 1990 and values equal to zero indicate no change in percent 

reflectance since 1990. 

 At this point, the change images for the three bands (Green, Red, NIR) had a 

range of possible values. It was necessary to set some threshold, unique to each band, to 

determine areas of change and no change (see Figure 3.6). To determine the best 

threshold, one hundred different thresholds were tested. At each threshold, the chi-square 

statistic was measured and the percent of calibration points accurately classified were 

recorded. The chi-square statistic applied is a measure of how good the change map for a 

single band follows the expected distribution of change based off of the calibration data.  

The validation data was then submitted to the calibrated system. Two graphs were created 

to identify patterns. The first graph (see Figure 3.7) plotted the percent of accurately 



www.manaraa.com

 36 

identified validation data samples (% of accuracy) against the tested thresholds. Please 

note how regardless of which band, the percent of accurately identified validation data 

followed the same pattern as the threshold increased. In the second graph (see Figure 3.8) 

we plotted the chi-squared statistic against the tested thresholds. The graph followed the 

same trend as the previous graph where, regardless of band, the chi-squared statistic 

followed the same pattern as the threshold increased. The minimum chi-square statistic 

for each band and its associated threshold and % accuracy are shown in the table below 

(see Figure 3.9). 

 All three change maps were then combined to create a false color composite 

image (see Figure 3.10). Intersecting the areas of change between the three maps 

produces areas of agreement (white) and areas of disagreement (colored). Additionally, a 

map composite image of all three change maps reflecting areas of agreement and 

disagreement only was also created (see Figure 3.11). Green indicates areas of agreement 

between the three change maps while blue indicates areas of disagreement. Using the 

principle of agree and disagree: this false color composite image of all three change maps 

reveals that all three change maps agree that 11% of the study area changed and disagree 

whether an additional 8.3% of the study area changed. 



www.manaraa.com

 37 

 

Figure 3.6 Image Differencing: Setting a Threshold 
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Figure 3.7 Image Differencing: % Accuracy and Threshold 

 

 

Figure 3.8 Image Differencing: Chi-Square Statistic and Threshold 
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 Threshold Accuracy Min (Chi-Squared) 

Green 0.0488 74.8% 0.0452 

Red 0.0685 74.2% 0.1016 

NIR 0.0697 74.8% 0.1807 

Figure 3.9 Image Differencing Results 

 

 

Figure 3.10 Image Differencing: False Color Composite 
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Figure 3.11 Image Differencing: Three Band Composite Image: Agree/Disagree Map  
 

 (3.5.2) Image Ratioing 

 Image ratioing involves the division of the newer image by the older image, for n 

number of bands. Because you cannot divide the numerator (Band n)2000 by a 

denominator (Band n)1990  of zero, 0.01 was substituted for zero denominators. This value 

is sufficiently small that it did not significantly influence any results and it permitted the 

research to continue without throwing out pixels divided by zero. Values greater than 1.0 
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indicated that the 2000 image had higher reflectance while values less than 1 indicated 

that the 1990 image had higher reflectance. Values equal to 1.0 reflected equal 

reflectance between both years. Per the original distribution of each band (see Figure 

3.12), it’s clear that the ratio produced a non-normal distribution as expected from the 

literature review. To transform it to a more manageable distribution, the following 

transformation equation was applied: 

Transformed Value = atan (Band i2000 / Band i1990) + ∏/4 

 

Figure 3.12 Image Ratioing: Original, Non-normal Distribution by Band 
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 The theoretical purpose for this transformation is that arc tan returns a roughly 

linear distribution of values taken from 1/x for all x’s within the bounds of 0 to 1. Values 

less than zero indicated that the 1990 image had higher reflectance while values greater 

than zero indicated that the 2000 image had higher reflectance. Values equal to 1 

indicated equal reflectance for the two years. In Figure 3.13 we now see the distribution 

of each transformed band. Note that each distribution is now relatively normal, albeit 

peaked. 

 

Figure 3.12 Image Ratioing: Arc tan Transformation Histograms by Band 



www.manaraa.com

 43 

One final transformation is applied by taking the absolute value of the previous 

arc tan transformation. An interesting note is the level of correlation between the three 

band ratios following the implementation of this transformation. In Figure 3.14 we see 

the correlation matrix reveals that each band has moderate to high correlation with the 

others. 

Correlation Green Red NIR 

Green 1.0 0.96 0.8 

Red 0.96 1.0 0.83 

NIR 0.8 0.83 1.0 

Figure 3.14 Image Ratio Correlation Matrix Using the Absolute Value of the Arctangent 
Transformation by Band 

 
 After these transformations, the three band ratios (green, red, NIR) had a range of 

possible values. Thresholds had to be set, unique to each band ratio, to determine areas of 

change/no change. The process used in threshold specification in image differencing is 

identical to the process applied for image ratioing. Following this process, two graphs 

were created to identify patterns. The first graph (see Figure 3.15) plotted the percent of 

accurately identified validation samples against the tested thresholds. Please note how 

regardless of which band, the percent of accurately identified validation samples follows 

the same pattern as the threshold increases. The second graph (see Figure 3.16) plotted 

the chi-square statistic against the tested thresholds and follows the same trend where, 

regardless of band, the chi-square statistic follows the same pattern as the threshold 

increases. The minimum chi-square statistic for each band and its associated threshold 

and % accuracy are shown in the table below (see Figure 3.17). 
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Figure 3.15 Image Ratioing: % Accuracy and Threshold 

 

 

Figure 3.16 Chi-square Statisic and Threshold 

 

 Threshold Accuracy Min (Chi-Squared) 

Green 0.102 75% 0.102 

Red 0.130 75.6% 0.045 

NIR 0.114 74.8% 0.045 

Figure 3.17 Image Ratioing Results 
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All three change maps were loaded to create a traditional false color composite 

image (see Figure 3.18). Intersecting the areas of change between the three maps 

produces areas of agreement (white) and areas of disagreement (colored). Additionally, a 

map composite image of all three change maps reflecting areas of agreement and 

disagreement only was also created (see Figure 3.19). Green indicates areas of agreement 

between the three change maps while blue indicates areas of disagreement. Using the 

principle of agree and disagree: this false color composite image of all three change maps 

reveals that all three change maps agree that 10.2% of the study area changed and 

disagree whether an additional 9.29% of the study area changed.  
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Figure 3.18 Image Ratioing: False Color Composite  
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Figure 3.19 Image Ratioing: Three Band Composite Image: Agree/Disagree Map 
 

(3.5.3) Image Regression 

As mentioned in the literature review, Image regression involves applying a linear 

regression model for each pair of bands between the two images using the pixels of 

Band1990 as the independent (X) and the pixels of Band2000 as the dependent (Y). The 

resulting regression equation is of the form: 

Predicted2000 = Band1990 * m + b 
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where m is the slope and b is the intercept. Figure 3.20 details the equations for each 

band. The regression line was plotted on three scatter plots where the color scheme 

indicates density of points (see Figure 3.21, 3.22, 3.23). 

 

Band Slope (m) Intercept (b) R R2 

Green 0.7958 0.0419 0.8154 0.6650 

Red 0.7895 0.0460 0.8117 0.6589 

NIR 0.8038 0.0569 0.8352 0.6975 

Figure 3.20 Regression Equations by Band 

 

 

Figure 3.21 Regression Line for the Green Band 
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Figure 3.22 Regression Line for the Red Band 

 

 

Figure 3.23 Regression Line for the NIR Band 
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 For each regression between band pairs, the residual (Re) was computed using: 

Re = Band2000 – Predicted2000 

Values greater than zero signified that the regression under-predicted reflectance for the 

2000 image while values less than zero signified that the regression over-predicted 

reflectance for the 2000 image. Values equaling zero indicated that the regression 

predicted reflectance for the 2000 image exactly (see Figure 3.24).  

 

       Green Residual Image              Red Residual Image 

 

NIR Residual Image 
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Figure 3.24 Image Regression: Residual Images by Band 
Blue = residual < 0, White = residual = 0, Red = residual > 0 

 

The residual images show that the regression over-predicted reflectance in the 

year 2000 in the southeast region of the study area where the terrain was more 

mountainous, providing a different spectral signature than the desert region in the 

northwest portion of the study area which indicated an under-prediction of reflectance for 

the year 2000. The desert in the northwest region contained drier soil composition than 

that of the southeast corner, and thus unique reflectance values for each region yielded 

different results from the regression equation. Additionally, weather reporting for this 

area for both years indicated no prior precipitation or change in pressure systems, 

indicative of weather patterns. 

The histograms for these residuals were also plotted (see Figure 3.25).  
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Figure 3.25 Image Regression: Histograms of the Residuals by Band 

 

The absolute value of the residuals was then calculated. With the absolute value 

applied to the residuals, the values no longer reflect under or over-prediction of 
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reflectance, but the magnitude of the residual. Figure 3.26 gives an example of what a 

transformed histogram looks like using the Red band. Figures 3.27, 3.28, and 3.29 show 

the maps created from taking the absolute value of the residuals for the green, red, and 

NIR bands respectively. Figure 3.30 provides descriptive statistics for each band. 

 

 

Figure 3.26 Image Regression: Histogram of the Absolute Value  
of the Residuals for the Red Band 
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Figure 3.27 Image Regression: The Absolute Value of the Residuals  
for the Green Band 
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Figure 3.28 Image Regression: The Absolute Value of the Residuals  
for the Red Band 
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Figure 3.29 Image Regression: The Absolute Value of the Residuals  
for the NIR Band 

 

 

Band Slope (m) Intercept (b) R R2 

Green 0.7958 0.0419 0.8154 0.6650 

Red 0.7895 0.0460 0.8117 0.6589 

NIR 0.8038 0.0569 0.8352 0.6975 

Figure 3.30 Image Regression: Descriptive Statistics by Band 
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 At this point, the three band residual images had a range of possible values. A 

threshold was selected, unique to each band ratio, to determine areas of change/no 

change. The method for selecting these thresholds is identical to the one applied to the 

previous change detection techniques. Figure 3.31 plotted the percent of accurately 

identified validation samples against the tested thresholds and Figure 3.32 plotted the chi-

square statistic against the tested thresholds. Please note how regardless of which band, 

the percent of accurately identified validation samples in the first graph follows the same 

pattern as the threshold increases while the second graph also follows the same trend 

where, regardless of band, the chi-square statistic follows the same pattern as the 

threshold increases. The minimum chi-square statistic for each band and its associated 

threshold and % accuracy are shown in the table below (see Figure 3.33). 

 

 

Figure 3.31 Image Regression: % Accuracy and Threshold 
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Figure 3.32 Image Regression: Chi-square Statistic and Threshold 

 

Band Threshold Accuracy Min (Chi-Squared) 

Green 0.0215 67.2% 0.045 

Red 0.0301 66.4% 0.045 

NIR 0.0327 66% 0.181 

Figure 3.33 Image Regression Results 

 

All three change maps were loaded to create a traditional false color composite 

image (see Figure 3.34). Intersecting the areas of change between the three maps 

produces areas of agreement (white) and areas of disagreement (colored). Additionally, a 

map composite image of all three change maps reflecting areas of agreement and 

disagreement only was also created (see Figure 3.35). Green indicates areas of agreement 

between the three change maps while blue indicates areas of disagreement. Using the 

principle of agree and disagree: this false color composite image of all three change maps 

reveals that all three change maps agree that 12.5% of the study area changed and 
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disagree whether an additional 10.1% of the study area changed. 

 

 

Figure 3.34 Image Regression: False Color Composite 
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Figure 3.35 Image Regression: Three Band Composite Image: Agree/Disagree Map 
 

(3.5.4) Vegetation Index Differencing 

Vegetation index differencing involves a form of band ratioing. The first step of 

this technique yields the Normalized Difference Vegetation Index (NDVI) as calculated 

on each image using the following formula: 

NDVI = (NIR – Red) / (NIR + Red) 

NDVI output values range between -1 and 1 and can be seen in Figure 3.36 and 
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3.37 where red indicated an NDVI below zero, green indicated an NDVI above zero, and 

black indicated an NDVI equal to 1. 

 

Figure 3.36 NDVI Values for 1990 
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Figure 3.37 NDVI Values for 2000 

 

 

The second step in this method requires the calculation of the NDVI difference 

(D) between the two dates: 

D = NDVI2000 – NDVI1999 

The difference output ranges between -2 and 2 where positive values indicated an 
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increase in NDVI since 1990 and negative values indicated a decrease in NDVI since 

1990. Figure 3.38 is the NDVI difference map where red indicates a decrease in NDVI, 

green indicates an increase in NDVI, and black indicates no change in NDVI.  

 

Figure 3.38 NDVI Difference 

 

 Finally, the absolute value of the difference image between the two dates was 

calculated. The maximum and minimum value of this layer is 0 and 2. Positive values 
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indicated a magnitude of change in NDVI. Figure 3.39 shows the absolute value of the 

NDVI difference values where black indicates no change in NDVI and higher levels of 

gray indicate higher absolute difference in NDVI. 

 

 

Figure 3.39 NDVI Absolute Difference  
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In Figure 3.40, the NDVI absolute difference histogram was plotted with 

Frequency along the Y-axis and absolute difference of NDVI along the X-axis. Figure 

3.41 provides descriptive statistics to detail the absolute change in NDVI since 1990. 

 

Figure 3.40 NDVI Absolute Difference Histogram 

Figure 3.41 Descriptive Statistics of Absolute Difference in NDVI since 1990 

 

 At this point the selection of a threshold is necessary to determine areas of 

change/no change in the absolute difference in NDVI data. To determine which threshold 

was best, one hundred different thresholds between the minimum and the maximum 

value of the layer were examined and the accuracy of each threshold at identifying 

change (among the calibration points) was recorded. To determine the final accuracy for 

reporting, we looked at how well our change map identified our validation samples. The 

threshold that best classified our validation samples was 0.495 with an accuracy of 77% 

Minimum Maximum Average Standard Deviation 

0.0 0.7395 0.0293 0.0556 
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(see Figure 3.42) where green indicated a changed area. 

 

 

Figure 3.42 Vegetation Index Differencing: “Best Change” Map 
This “best change” map reflects the highest amount of accuracy at 77% 

with a threshold of 0.495. 
 

 However, it is of note that moving the threshold higher than 0.495 did not 

influence the accuracy much (see Figure 3.43). Within our validation dataset, 23% of the 

points were marked as changed pixels. Because our measure of accuracy for change maps 
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is percent of accurately identified validation samples, it is possible to classify all pixels in 

our image as no change and still reach a relatively high accuracy of 77% using the 

validation set. While this method of reaching the best change/no change threshold is an 

honest statistic, it does not meet our standard. This is notable since it is the same 

phenomena that would occur with all the change detection methods in this study, i.e. 77% 

accuracy by classifying all pixels as no change. As a result, another approach to selecting 

a threshold has been applied to all change detection techniques in this study. 

 

Figure 3.43 Vegetation Index Differencing: % Accuracy and Threshold 

 

 Like the other change detection methods, a threshold must be set to determine 

what is change and no change. For example, all values > 0.185 were classified as change 

(see Figure 3.44). The method for selecting these thresholds was identical to the one 

applied to the previous change detection techniques. After examination of the chi-square 

statistic, a local minimum at the threshold of 0.052 was identified. This means that the 

distribution of observed and actual changes were approximately the same (see Figure 

3.45).  
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Figure 3.44 Vegetation Index Differencing: Setting a Threshold 

 

Figure 3.45 Vegetation Index Differencing:  
“Best Change” Map Using Chi-square Statistic 



www.manaraa.com

 69 

This “best change” map reflects the highest amount of accuracy at 65% with a 

threshold of 0.052. While the accuracy of the “best change” map using the chi-square 

statistic to select a threshold is lower than hoped for, the distribution of changed pixels in 

the map more closely followed that of the validation samples. This is preferable over the 

77% “best change map” that assigns all pixels to no change. A visual comparison of 

Figure 3.42 and 3.45 clearly confirms the choice to use the chi-squared statistic in 

selecting a threshold for all change detection techniques in this study.  

  

(3.5.5) Principal Components Analysis 

 Principal components analysis (PCA) involves combining the green, red, 

and NIR bands for each image into a single stacked dataset. Of the new dataset, bands 1-3 

were from 1990 and bands 4-6 were from 2000. Using ENVI geospatial image processing 

software, PCA was run on the stacked image. In Figure 3.46 values less than zero 

indicated a negative loading on the component and values greater than zero indicated a 

positive loading on the component. Values equaling zero indicated no loading on the 

component. It is of note that each component’s distribution is centered on zero.  

With PCA layers, the selection of two thresholds was required to identify change 

(see Figure 3.47). Each PCA layer was transformed by taking the absolute value of the 

component. This allows the setting of a single threshold on each band to determine 

change. Figure 3.48 shows the absolute value component histograms where values that 

equal zero indicated no loading on the component and values greater than zero indicated 

the magnitude of loading on the component. 
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Figure 3.46 PCA: Component Histograms 
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Figure 3.47 Setting Two Thresholds for PCA Layers 
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Figure 3.48 PCA: Absolute Value Histograms by Component 
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 After these transformations, the three components have a range of possible values. 

A threshold had to be set, unique to each component, to determine areas of change/no 

change. The method for selecting these thresholds was identical to the one applied to the 

previous change detection techniques. Two graphs were created to identify patterns 

where Figure 3.49 plotted the percent of accurately identified validation samples against 

the tested thresholds and Figure 3.50 plotted the chi-square statistic against the tested 

thresholds. The minimum chi-squared statistic for each component and its associated 

threshold and % accuracy are shown in the table below (see Figure 3.51). 

 

 

Figure 3.49 PCA: % Accuracy and Threshold 
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Figure 3.50 PCA: Chi-square Statistic and Threshold 

 

Components Threshold Accuracy Minimum Chi-Square 

1 0.1760 64.8% 0.0452 

2 0.0700 74.6% 0.1016 

3 0.0441 61.8% 0.9147 

4 0.0149 65% 1.3665 

5 0.0126 60% 0.7228 

6 0.0045 70.2% 0.0113 

Figure 3.51 Principal Components Analysis Results 

 

 From the table above, clearly the second component and the sixth component are 

the best components at predicting change. Using the thresholds in the table above, two 

change maps were created for the second and sixth component (see Figure 3.52 and 3.53) 

where white reflects areas of change and black reflect areas of no change. A visual 

inspection of the two change maps concludes that the second component provides the 
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best map of change. 

 

 

Figure 3.52 PCA Second Component Change Map 
This second component change map  

reflects the ability to predict change with 74.6% accuracy. 
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Figure 3.53 PCA Sixth Component Change Map 
This sixth component change map  

reflects the ability to predict change with 70.2% accuracy. 
 

(3.6) Discussion of Results 

After a thorough execution of each change detection method, it was clear that the 

determination of thresholds for each technique was critical to method success.  This will 

be discussed in the next chapter. 
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Chapter 4: Discussion and Conclusion 

This research was designed to use satellite remote sensing technology in 

combination with a variety of change detection methods to detect, measure, and map 

urban growth of the greater Las Vegas area between 1990 and 2000. The research began 

with the working hypothesis that while all of the methods tested would detect major 

change within the study area, the change threshold specification required by each method 

would be a significant subjective complication of the work. In other words, each method 

would require a subjective decision to be made of the practitioner as to what degree of 

change (as numerically measured by the method) constituted genuine change on the 

ground.   

With the context of this working hypothesis and the change specification problem, 

this thesis addressed the following three objectives:  

1. To assess urban change in Las Vegas between 1990 and 2000 using five change 

detection methods popular in satellite remote sensing. 

2. To compare the results of the five change detection methods by first, determining 

the success of the method in capturing change between 1990 and 2000 and 

second, determining how well each method performed relative to each other. 

3. To address the problem of change threshold specification by introducing a simple 

computer method whereby that specification could be done objectively.  

While the first objective of this thesis has already been achieved as described in 

detail in the previous chapter, the other two objectives require more conclusive comment. 

(4.1) Objective 2: Comparing the Methods 
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• Image differencing.  In terms of overall accuracy, this change detection method 

provided excellent performance. It is significant that the accuracy of the method 

was not impacted by the choice of bands. This fact is comforting since band 

selection has always been a source of some anxiety to the change detection 

researcher. As a visual comparison of the absolute value difference images 

demonstrates, the spatial distribution of the errors in the method is also consistent 

from band to band. Additionally, looking at the agree/disagree image, it follows 

the pattern of change expected in the study area. There were no large patches of 

false positives or missed change that came as a surprise. 

• Image ratioing.  Once the image ratio was transformed mathematically so that a 

single change threshold value could be used (rather than a pair), the remainder of 

the analytical process for detecting change was nearly identical to both image 

differencing and vegetation index differencing.  This minor additional step, which 

was quite intuitive to us, has not been recorded in the change detection literature.  

Of all the change detection methods, image ratioing was superior when overall 

accuracy is the metric of goodness. However, unlike image differencing, the 

accuracy was impacted by the choice of band.      

• Image regression.  Compared to the other methods, the accuracy of the image 

regression approach was disappointingly low. The pattern of error was also a big 

problem since it was spatially dependent (large areas of error) rather than 

randomly distributed (small patches of error). In large measure, this spatial 

dependence of error was due to the distribution of vegetation in the study area.  

For example, the method shows that the White Rock Desert north of Las Vegas 
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was dramatically modified between 1990 and 2000.  This faulty depiction was 

encountered regardless of the image bands used in the regression. This significant 

geographical error was due to the difference in vegetation greenness, and/or soil 

moisture differences in the two sample years. It was not the substantive effect of 

urbanization. We are at a loss to describe why the regression approach was so 

sensitive to this vegetation change when the ratio methods were not. More 

research into this problem is warranted.   

• Vegetation index differencing.  After review of the “best change” vegetation index 

differenced maps, it was clear the chi-square map was the best among them, 

especially for explaining the variability of change/no change in the study area. 

The alternative measure of agreement created a map that under-predicted change 

at a level too great to make it useful in a practical sense. The best threshold for 

this method was 0.052, which accurately placed 65% of the validation samples 

into the correct change/no change category. While even the accuracy of the best 

vegetation index differenced map was poor in comparison to the maps produced 

by ratioing and differencing, the spatial distribution of changed pixels in the map 

more closely followed that of the validation samples. From an accuracy 

assessment perspective, this would be preferable to a hypothetical map that might 

possess higher overall accuracy (e.g. 75%) but have poor power to detect change, 

i.e. its high accuracy might be due to the combination of poor sensitivity to 

change (in the method used) combined with a target that experienced little 

change. 
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• Principal Components Analysis. While this change detection method was not 

particularly difficult to execute, it required extra steps in the process that the other 

methods did not need. When we began the change detection research, the intuitive 

attraction to PCA was the fact that many bands could be used together -- no band 

selection was required. This was appealing because having more data in the 

process would suggest a greater ability to detect change. However, when applied 

to the Las Vegas study area, PCA demonstrated a poor ability to accurately 

identify areas of change/no change. As mentioned in the literature review, the 

results of PCA as a change detection method have been mixed.  Las Vegas is 

apparently one of those areas where its performance is poor. 

To a certain extent, some of the results of this research are counterintuitive.  For 

example, common wisdom found in the literature suggests that image ratioing should 

produce much higher accuracies than image differencing. This is because image ratioing 

removes the effect of atmospheric differences between the two dates. However, in our 

test area, image subtraction was only slightly inferior to image ratioing.  

  In addition, as mentioned above, PCA should have been an overall superior 

method because 1) more variables (i.e. bands) could be included in the change detection 

process, 2) atmospheric effects are removed as a source of variability, and 3) it is a 

statistical method known to effectively summarize a set of correlated variables into a 

sequence of new variables in order of descending variance. Given that landscape change 

produces variance in landscape reflectivity, PCA would seem to be an excellent fit for 

change detection analysis. Nonetheless, as mentioned above, it was a poor contender in 

the Las Vegas study area. 
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The last counterintuitive result was the general observation that the green band 

was slightly superior for detecting change than the other two bands; i.e. in most cases, 

analyzing the green band produced higher change detection accuracy than either the red 

or near infrared band. Textbook wisdom states that the red and near-infrared bands are 

almost always the “safe bet” bands to use for a change detection application.   

 The apparent disagreement between the Las Vegas results and conventional 

wisdom confirms the maxim that remote sensing targets are all unique, and a measure of 

experimentation will always be necessary to find optimal approaches.   

(4.2) Objective 3: Threshold Specification 

 When this research began, the threshold specification issue loomed large over the 

entire work.  It was a necessary complication of each approach tested. As mentioned 

many times, the fear of the threshold issue was due to the fact that it created a point of 

decision that was subjective and greatly impacted the accuracy of the change prediction 

maps. In research, an objective approach to decision-making that relies on a metric of 

goodness (that can be optimized) is always preferred to a subjective approach.  In 

addition, a subjective matter that has little impact on the final results is not a point of 

worry for most researchers. The choice of threshold in change detection is the worst 

possible research scenario, for it is both subjective and high impact. However, the result 

of our simple repetitive procedure to objectively calibrate the threshold value using a 

separate calibration field data set completely eliminated threshold specification as an 

issue. To our knowledge, this simple calibration approach has not been used by change 

detection researchers to-date. In this study, this calibration was done by automatically 

executing the change detection algorithms using 100 different threshold values within a 
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reasonable range and choosing the one that produced the highest accuracy with the 

calibration data. The complication that this approach presents to future research is that 

two sets of ground truth data must be gathered. The first set would be used for calibration 

of the change detection methods, i.e. determining the optimal threshold value. The second 

set would be used for validation, i.e. determining the actual accuracy of the change 

detection algorithm. To make this iterative approach work, it is essential that the 

practitioner plan on having a design and budget which permits the collection of two 

distinct ground truth data sets of sufficient size.            

(4.3) Summary 

This research constituted a study of methodology, not a study of urban change 

itself.  It examined several change detection algorithms yielding change/no-change 

results.  In Table 1, as outlined in Chapter 2, the advantages and disadvantages of each 

method applied in this research is described with its corresponding literature. In Table 2 

we presented the accuracy results from the change detection method.  Each of the 

methods accurately identified areas of change/no change with moderate levels of 

accuracy.   

After a thorough execution of each change detection method and its subsequent 

threshold selection, it is clear that the determination of thresholds for each technique is 

critical to its success. Moreover, the type of statistic used in optimizing the change cutoff 

is significant.  In other words, the measure used to describe the "goodness" of a change 

map has significant implications when selecting a cutoff threshold between change and 

no change.  The approach of using a calibration and validation ground truth data set has 

significant merit. 
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The examination of these methods adds to the body of knowledge by providing a 

measure of guidance for future researchers and analysts performing change detection 

methods over similar targets. Additionally, utilizing urban change detection in an arid 

environment and its methodologies provides a detailed “jumping off” point for urban 

planners and policy makers to make informed decisions that may impact natural 

resources, surrounding environments and natural ecosystems, urban quality of life, and 

infrastructure needs.   

Beyond these vital applications of change detection methodology domestically is the 

impact that such research could have for military strategies and political approaches 

abroad. Since 9/11 the United States has engaged in the War on Terrorism that has taken 

this country’s war fighters to two separate fronts: the Afghanistan/Pakistan border and 

Iraq. More recently, the Arab Spring has caused a US presence in Libya with potential for 

boots on the ground in Syria and Yemen. The Arab Spring has also caused disruption to 

many of America’s allies: Egypt, Algeria, and Qatar. The study of change detection 

methodologies in this thesis is unique in that the results focus on a study area in the desert 

regions of the greater Las Vegas area.  Similarly, the various fronts engaged in by the 

United States as well as those of our allies possess similar physical geographies sensitive 

to terrorist operations, training, and planning as well as state governments and civic 

protesters attuned to their movements. The application of the change detection methods 

used in this thesis are beneficial to those studying the activities, development, and 

patterns of terrorists and other independent entities in regions with similar geography and 

may provide solutions and a course of action for future applications to support the war 

fighter and intelligence community alike.  
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